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The analysis in part I is generalized to any crystal containing rigid molecules which undergo aniso- 
tropic translational and librational motion about a site fixed by symmetry. The treatment is correct 
to terms in (u2) 2 and (o)2) 2, where (u~) is the mean-square translational displacement of the molecule 
along the ith axis and (0) 2) is the mean-square angular libration about the same axis. The first-order 
treatment to terms in (u 2) and (co 2) is shown to be equivalent to the rigid-body theory in current use. 

1. Introduction 

It has recently been shown by Johnson (1969) that the 
conventional model for least-squares structure refine- 
ment, based on individual atomic temperature factors, 
can be improved by the addition of higher cumulants. 
Cumulants of the first order are simply the positional 
parameters for the atoms, and the second-order cumu- 
lants are the anisotropic (Gaussian) temperature fac- 
tors. For an atom on a site of point symmetry 1, there 
are ten third-order cumulants giving rise to terms with 
triple products of the Miller indices; these terms are 
added to the first-order cumulants in the structure- 
factor expression. Likewise the fourth-order cumulants 
give rise to extra terms added to the temperature fac- 
tors. In order to fit ten third-cumulant parameters and 
fifteen fourth-cumulant parameters per atom, a large 
amount of accurate data is required, unless some 
physically reasonable model can be put forward which 
imposes constraints on the values of these cumulants 
and so reduces the number of variable parameters. 

In this paper we show how third- and fourth-order 
cumulants can be evaluated for a rigid molecule under- 
going anisotropic thermal motion, without introducing 
any more parameters than those needed for specifying 
the second-order cumulants. The molecule must be 
such that there is a point within it which is fixed by 
symmetry. The maximum number of variable param- 
eters for each molecule, other than atomic positional 
parameters, is twelve - six representing the mean-square 
translational displacement tensor T of the molecule 
and six representing the mean-square libration tensor 
L. The corresponding calculation for isotropic motion 
and its application to the analysis of neutron diffrac- 
tion data on hexamethylenetetramine are described in 
papers I (Willis & Pawley, 1970) and III (Duckworth, 
Willis & Pawley, 1970). Our notation follows that in 1. 

2. Atomic temperature factors 

We assume that the internal modes of vibration of the 
molecule make a negligible contribution to the atomic 
temperature factors exp [ -  W~(Q)], so that these fac- 
tors are determined entirely by the tensors T and L. 
Within the harmonic approximation, T gives rise to 
second-cumulant terms only in the expression for 
exp [-WK(Q)], whereas L gives rise to higher-cumu- 
lant terms also. In this section we shall calculate the 
second and higher-cumulant terms contributed by the 
libration tensor L. 

Referring to equation (2.4b) of paper I, the quantity 

- WUb(Q)=ln (exp ( i Q .  uUb)) 

must be expressed in terms of L for a molecule with 
a unique fixed point. The completely general case of 
a molecule without such a unique point involves a 
considerably more complicated analysis. 

2.1 Expression for (exp ( iQ .  u l i b ) )  

Let us consider the molecule in a unit orthogonal 
coordinate system. If the equilibrium position for any 
atom in the molecule is denoted by r=(rl,r2,r3), the 
thermal displacement of the atom due to libration is 
given by equation (I. 2.7). It is not possible to trans- 
form the molecular axes to make 

r 1 = r 2 = O  

as in paper I, and so the expression for the librational 
displacement must be written out in full. The first com- 
ponent of this expression is 

Ul ib = (0)2 r 3 - -  U)31"2) ( l -- -~co 2) + [O)l(c02r 2 + 0)31"3) 

-(oo22 +oo~)ri] (½-2a4-~ 2) (l) 
where 

2 2 2 2 co =co I +602 +0) 3 . 
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The other two components can be obtained by cyclic 
permutation of indices. 

As equation (1) is true for any orthogonal coordinate 
system, let us choose the system in such a way that 
~he potential function for the librating molecule can 
be expressed in the form 

V(to)= Vo +-}2 ( co2 + o)22 col]  (2) 
~Q1 b 2  @ , Q 3 /  ' 

where there are no cross terms co~cot for i # j .  (This 
transformation of coordinates is discussed later in 
§ 2.2.) Notice here that (2~ are the diagonal components 
of a 3 x 3 matrix which must transform as a second- 
rank tensor. The coordinate system is chosen so that 
this matrix is diagonal: off-diagonal components dis- 
appear from all the equations which follow, making 
their transformation properties difficult to determine. 
Further ,  let us define &,hz, ha as the Miller indices 
transformed into this coordinate system, so that the 
equation (I. 2.11) becomes 

Q =  2rC(hl,hz, h3) . (3) 

(ao = 1 for a unit orthogonal coordinate system.) Writ- 
ing y = Q .  u ub, then 

y =  2zr{[h1(co2ra-co3r2) + . . .  + . . .  ] (1 _ ~co2) 

+ [hl(colco2r 2 + colco3r3- co~r~- co]rt) + . . .  + . . .  ] 

x (½-~co2)}.  (4) 

The symbols + . . .  + . . .  indicate addition of terms 
related to the first by cyclic permutation of the indices. 

By evaluating (y) ,  (y2), (y3) and (y4), 
(exp ( iQ .  ulib)) can be found from equation (I. 2.25) 
correct to the fourth order in y, where the angular brac- 
kets indicate mean values. This equation is 

i 
In (exp i y ) = i ( Y ) - X ( y 2 ) + ½ ( y )  2 -  -~ (y3) 

i i 
- 3 ( y ) 3 +  _ ~ ( y )  ( y2 )+2 .~(y4)_¼(y)4  

_ ~ ( y 2 ) 2 _ ~ ( y )  ( y 3 )  + ½ ( y ) 2 ( y 2 )  . (5 )  

To obtain (z)  where z is any function of co, we use 
the relation 

SSST+ze+ [-+ (+, ++;+ dcoldcozdco3 
.1 

~ exp _ . . . . . . . . . . . .  dcoldco2dco3 

(6) 

Substituting a few simple values for z: 

Thus to obtain (y~), equation (4) is raised to the nth 
power, the terms are grouped as coefficients of powers 
of co+, discarding those terms containing col', m--C-2, 4, 
and the remaining terms are substituted with equations 
(7). This assumes that terms of higher order than oo4 
can be neglected. In this way the following equations 
are obtained : 

( Y )  _ h i [ -  ½g'22_ ½5"23 + 2-%(2Q2.Q3 + Q3~r-21 + Sr-~l~r'~ 2 
2re 

+ 3922 + 3£22)]rl + . . .  + . . .  

( y 2 )  - h 2 r Q  r 2 2 3 2 4 - ~ -  - -  1/ 2 3 - ~ - ~ - ~ 3 r 2 - ~ - ~ ' ~ 2 ( ~ r l - r 2 ) + ~ - ~ 2 ( ~ r 2 1 - r 2 )  

+Q2f23(½r~-i 2 i 2 3 r 2 - ~ r 3 )  

+ Q 3 Q I ( ¼ r 2  1 2 - - ~ r 2 )  + Q 1 Q z ( ¼ r ~ - ½ r ] ) ]  + . . . + . . .  

+h2h3[-201 7 2 +~f21 + f22f23 +~O3f2t 

+~f2tf22]r2ra + . . .  + . . .  

(y3) _/,3r 9o2,.2 902,.2}(2zK23(r~+r~)lr1+ + 
87~3 '" l t - -  ~ 2 " 3  - -  ~ 3 " 2  . . . . .  

_[_2 2 2 9 2  2 9 2  hlhz[~3(9r I - ~r2) + ~22£'23 (3q - ~-r3) 

2 a 2 _ ~ Q i Q z r a ] r  2 + .  . . + . . . + Q3QI(3r3 __zr2) _ o 2 

+hfha[O~(9r~- o 2 ~_ra) +g-22g-23(3r~_ gr2)9 2 

+ O,Qz(3r] - ]r] ) - }~30 , r]]r3  + . . .  + . . .  

+ hlh2h3[ 12(g22g23 + (23~1 + g21Q2)rlr2r3] 

(y4) -hl[3Q2r3 24 22 4 2 4 + 3123r~ + 6 Q 2 Q a r ~ r 3 ]  + + 
16z# . . . . . .  

+h~h2[- 12f2~rlr~- 12f22f23rlr2r]] + . . .  + . . .  

+h~h3[-12Q2rlr] - 12Q2Q3rlr22r3] + . . .  + . . .  

+ h2h2ha[24Y22Y23r2rzra - 12~3Y2ar3r3 

- -  1 2 Q i Q z r z r ] ]  + . . . + . . .  

2 2  2 2 2  + h~h2[18Y23qr~. + 6(22g-23r~r 2 + 6(23£2~r22r~ 

+ 6f2~f22~] + . . .  + . . .  (8) 

Substituting equations (8) in equation (5), the terms 

i ( y ) 3 _ ¼ ( y ) 4 _ ~ ( y )  (y3) +½(y)2(y2) 

can be ignored as these give rise to quantities of order 
co6. The remaining terms are arranged as coefficients 
of the products of the indices &, ignoring all but the 
lowest powers of £2, within these coefficients. The final 
expression for In (exp iv)  works out as 

In (exp i y )=  - WIIb(Q) 

= 2nihx[- ½~¢'~2 - -  ½Q3]rl + . . .  + . . .  

(first cumulant) 

z=co~, ( z ) = Q l ( 2 Z c f 2 , ) t l z l ( 2 z c f 2 t ) ' 1 2 = O ,  ] 
z = c o l  4, ( z ) =  3f2~ 

__ 2 2 (Z)__~r~2~r'23 Z - -  0)20)3, 
z = co]', ( z ) =  0 for n odd .  j 

(7) 

2 2 1 2 1 2 +47t ha[-  2Q2r3-~Qar$]. + . . .  + . . .  
+ 47r2h2h3[f21r2r3] + . . .  + . . .  

(second cumulant) 
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+ 87~3i h3ff 02~2 + Q]rZz)½ra] + + • ~ltk,~2~3 . . . . . .  
+ 8n3ih~hz[f2~(½~- r~) 
+(O203-£23E21 + f21E22)½rZ3]r2 + . . .  + . . .  

3"2 2 1 2  nt'87~ lhah3[Q2(2r3 - r~) 
+ (t22t'23 + t23t2~ - t-2~t22)½r~]r3 + . . .  + . . .  
+ 87~3ihlh2h3[ -- (~22Q3 + ~c~3~'21 

+ Qlg22)rlrzr3] 

(third cumulant) (9) 

where the fourth cumulant vanishes.* If we include the 
terms in £2d2j neglected in the first and second cumu- 
lant expressions in equation (9), the equation readily 
reduces to the isotropic form (I. 2.27). 

2.2 Expression for  temperature factor correct to 092 
The rigid-body model in current use is accurate only 

to o92, and it is instructive to derive the corresponding 
form of equation (9) to this approximation. If equa- 
tion (9) is rewritten, omitting all terms higher than 
first order in f2i, the resulting expression is 

In (exp ( iQ.  uUb))=2nihl[-½122-½(23]rl + . . .  + . . .  

+4n2h2[_ ½Q2r2 x 2 - - 2 ~ Q 3 r 2 ] + . . .  + . . .  

+4rc2hzha[g-21r2r3] + . . .  + . . .  (10) 

The first term in equation (10) includes the libration 
correction of Cruickshank (1956), usually applied after 
refinement is complete, and the remaining terms give 
the second-order cumulants. These second-order cumu- 
lants are equivalent to those used in the refinement 
procedure of Pawley (1964): they are 

( 0 - r3  r~) 
- 2/zZ(hl,hE, h3) r 3 0 - 

- -  r2 r l  

(~1 0 0 ) ( 0 r3-- r i i  ) (hi) 
~¢'22 --r3 0 h2 (11) 
0 ~'23 rE -- rl ha 

which can be written as a matrix product 

- -  2n2hVi~91h (12 ) 

defining V~ for the ith atom. The symbol ~ denotes 
transpose. 

Consider the matrix M which transforms from the 
crystal fractional coordinate system to the unit ortho- 
gonal system in which the potential function, equation 
(2), is diagonal. M is the product of two transforma- 
tions BA, A transforming from the crystal coordinates 
to a standard unit orthogonal system and B then trans- 
forming into the final system. Thus B diagonalizes the 
mean-square librational tensor L 

B L - B  = EL 

* We are indebted to Dr  C .K. Johnson  and to the referee 
for pointing out an algebraic error in our original expression 
for equation (9). 

The expression (12) can be written 

- 2n2(hM)A-a(BV~B) (B~B) (BV~B)A-~(1VIh) 

using B l = ~  and I~I=AB. This reduces to 

_ 2n2HA-WiLV~A-aH (13) 

where H=(Ha,Hz ,  H3) are the Miller indices in the 
crystal system and Vi is as defined by Pawley (1964). The 
librational contribution to the temperature factor in 
equation (1) of Pawley (1964) differs from expression 
(13) above only in the factor 2n2: this difference arises 
because in the present paper we define the mean-square 
librational tensor in the same units as those of Cruick- 
shank (1956). 

The above argument establishes the tensor proper- 
ties of L. It is important to note that (13) does not 
contain the transformation B. Indeed B is a necessary 
variable transformation for the treatment of § 2.1, but 
its purpose is served in expression (13) by the variable 
nature of all the six independent tensor components 
of L. This fact is used in the program which has been 
written on the basis of the present theory. 

3 .  C o m p u t a t i o n a l  

Our programming procedure is as follows. At the start 
of each least-squares cycle, L is diagonalized giving 
the matrix B. All the third-order cumulants are then 
obtained and used in calculating the structure factor 
F, but no use is made of these higher cumulants in 
calculating the differentials c~F/OL,j. These differentials 
are not strictly accurate, but as structure refinement 
is an iterative process the effect of the errors is only a 
slowing down of the refinement. In practice, we have 
found that the refinement is not perceptibly slower than 
that using the rigid-body model with second-order 
cumulants only. 

The program has been applied to the analysis of the 
neutron diffraction data of Pawley & Yeats (1969) for 
perdeuteronaphthalene. Structure refinements were car- 
ried out with second-order cumulants only, and with 
second- and third-order cumulants: the R indices were 
5.10 and 4.95% respectively. This is only a small im- 
provement, but, as the two models were identical apart 
from the order of the expansion, it is significant. Data 
of higher accuracy are required before we can hope 
to observe appreciable improvements using the present 
theory. 
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